Ch 31-Nuclear Physics

- Nucleus $\rightarrow \# p+\# n=$ atomic number $=A(A-Z=\# n)$
- Atomic mass unit $=u=1.66 \times 10^{-27} \mathrm{~kg}$
> $1 \mathrm{p}=1.007276 \mathrm{u}$
> $1 \mathrm{n}=1.008665 \mathrm{u}$
$>1 \mathrm{e}=0.00055 \mathrm{u}$
- Radius of Nucleus - different for each atom but SAME density means BIGGER R = BIGGER MASS
$>R=\left(1.2 \times 10^{-15}\right)\left(\mathrm{A}^{1 / 3}\right) \mathrm{m}$

Binding Energy

- energy needed to hold nucleus together
- tear apart = get energy
 back
- mass of sum of the parts \neq mass of the whole
- $\mathrm{E}=\Delta \mathrm{mc}^{2}$ (in JOULES!!!!)
- $1 \mathrm{u}=931.5 \mathrm{MeV}=1.67 \times 10^{-27} \mathrm{~kg}$

Radioactivity - atoms spontaneously give off particles to become more stable, mass and charge must always be conserved
Types of decay

1) $\operatorname{Gamma}(Y)=$ photon, no mass, no charge ex. ${ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{88}^{228} \mathrm{Ra}+{ }_{2}^{4} \alpha$

Energy in Nucleus

- Held together by Strong Nuclear Force
- + do NOT want to stay together
- various amounts of neutrons help stabilize
> IF N = Z = stable
> higher mass than $83=$ more unstable oxpgen nsotopes
- isotope $=$ same atom (same protons) different neutrons, some more stable than others
- average mass of atom on periodoic table

Example:

- $2 \mathrm{H}+2 \mathrm{~N}$ combine to form 1 Helium
- $2(1.0078 \mathrm{u})+2(1.0087 \mathrm{u})=4.0330 \mathrm{u}$
- Appendix F shows $\mathrm{He}=4.0026 \mathrm{u}$
- mass defect $=4.0330 \mathrm{u}-4.0026 \mathrm{u}=$. 0304 u ($931.3 \mathrm{Mev} / \mathrm{u}$) $=28.3 \mathrm{MeV}=$ binding energy
- Energy/nucleon $=28.3 \mathrm{MeV} / 4=7.08$ MeV/nucleon

2) Alpha Decay $(\alpha)=$ Helium nucleus $(m=4 u$, $q=2 e$)

3) Beta Decay $(\beta)=$ electron $(m=0, q=-1 e)$
ex. ${ }_{6}^{14} \mathbf{C} \longrightarrow{ }_{2}^{14} \mathbf{N}+{ }_{-1}{ }^{9} \beta$

Half-life $\left(\mathrm{T}_{1 / 2}\right)$ - The time it takes for HALF a sample of nuclei to decay (NOT MASS!!!)

$$
\mathrm{T}_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{.693}{\lambda}
$$

$\frac{\Delta N}{\Delta t}=\lambda N_{o}=A_{0}$
$\mathrm{N}=$ number of nuclei
$\mathrm{A}=$ activity $=$ disintegrations $/ \mathrm{sec}=\mathrm{Bq}$

Other units for A :
Curie $=\mathbf{C i}=3.7 \times 10^{10} \mathrm{~Bq}$
Roentgen = $R=$ due to x-rays and gamma rays only, $1 \mathrm{R}=2.8 \times 10^{-4} \mathrm{Ci}$
Gray $=\mathbf{G y}=$ absorbed dose by biological material $=\mathbf{J} / \mathrm{kg}$
Radians = Rd = like Gy but 1 Rd =. 01 Gy Rem = how affects body compared to stada x-ray

Carbon Dating

- Based on living tissue replacing C constantly
- Normal A = . $23 \mathrm{~Bq}, \mathrm{~T}_{1 / 2}=5730 \mathrm{yrs}$
- Activity decreases with time

